Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries
نویسندگان
چکیده
منابع مشابه
Characteristic Classes of Lie Algebroid Morphisms
We extend R. Fernandes’ construction of the secondary characteristic classes of a Lie algebroid to the case of a base-preserving morphism between two Lie algebroids. Like in the case of a Lie algebroid, the simplest characteristic class of our construction coincides with the modular class of the morphism. In [4] R. Fernandes has constructed a sequence of secondary characteristic classes of a Li...
متن کاملGraded Poisson - Sigma Models I : Complete Actions and Their Symmetries
The formalism of graded Poisson-Sigma models allows the construction of N = (2, 2) dilaton supergravity in terms of a minimal number of fields. For the gauged chiral U(1) symmetry the full action, involving all fermionic contributions , is derived. The twisted chiral case follows by simple redefinition of fields. The equivalence of our approach to the standard second order one in terms of super...
متن کاملNon-antisymmetric versions of Nambu-Poisson and Lie algebroid brackets
We show that we can skip the skew-symmetry assumption in the definition of Nambu-Poisson brackets. In other words, a n-ary bracket on the algebra of smooth functions which satisfies the Leibniz rule and a n-ary version of the Jacobi identity must be skew-symmetric. A similar result holds for a non-antisymmetric version of Lie algebroids.
متن کاملDifferential calculus on a Lie algebroid and Poisson manifolds
A Lie algebroid over a manifold is a vector bundle over that manifold whose properties are very similar to those of a tangent bundle. Its dual bundle has properties very similar to those of a cotangent bundle: in the graded algebra of sections of its external powers, one can define an operator dE similar to the exterior derivative. We present in this paper the theory of Lie derivatives, Schoute...
متن کاملLorentz transformations as Lie - Poisson symmetries
We write down the Poisson structure for a relativistic particle where the Lorentz group does not act canonically, but instead as a Poisson-Lie group. In so doing we obtain the classical limit of a particle moving on a noncommutative space possessing SL q (2, C) invariance. We show that if the standard mass shell constraint is chosen for the Hamiltonian function, then the particle interacts with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2005
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2004.11.002